Revisiting pulmonary acinar particle transport: convection, sedimentation, diffusion, and their interplay.

نویسندگان

  • Philipp Hofemeier
  • Josué Sznitman
چکیده

It is largely acknowledged that inhaled particles ranging from 0.001 to 10 m are able to reach and deposit in the alveolated regions of the lungs. To date, however, the bulk of numerical studies have focused mainly on micrometer sized particles whose transport kinematics are governed by convection and sedimentation, thereby capturing only a small fraction of the wider range of aerosols leading to acinar deposition. Too little is still known about the local acinar transport dynamics of inhaled (ultra)fine particles affected by diffusion and convection. Our study aims to fill this gap by numerically simulating the transport characteristics of particle sizes spanning three orders of magnitude (0.01-5 m) covering diffusive, convective, and gravitational aerosol motion across a multigenerational acinar network. By characterizing the deposition patterns as a function of particle size, we find that submicrometer particles [formulae see text (0.1 m)] reach deep into the acinar structure and are prone to deposit near alveolar openings; meanwhile, other particle sizes are restricted to accessing alveolar cavities in proximal generations. Our findings underline that a precise understanding of acinar aerosol transport, and ultrafine particles in particular, is contingent upon resolving the complex convective-diffusive interplay in determining their irreversible kinematics and local deposition sites.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multiple-path model of particle deposition in the rat lung.

A multiple-path model of particle deposition in the entire rat lower respiratory tract was developed. Deposition in every branch of an asymmetric lung model was calculated using published analytic formulas for efficiencies of deposition by sedimentation, diffusion, and impaction. The conducting airway tree of the model included the entire set of airway measurements for the Long-Evans rat collec...

متن کامل

Alveolar duct expansion greatly enhances aerosol deposition: a three-dimensional computational fluid dynamics study

Obtaining in vivo data of particle transport in the human lung is often difficult, if not impossible. Computational fluid dynamics (CFD) can provide detailed information on aerosol transport in realistic airway geometries. This paper provides a review of the key CFD studies of aerosol transport in the acinar region of the human lung. It also describes the first ever three-dimensional model of a...

متن کامل

Influence of the history force on inertial particle advection: gravitational effects and horizontal diffusion.

We analyze the effect of the Basset history force on the sedimentation or rising of inertial particles in a two-dimensional convection flow. When memory effects are neglected, the system exhibits rich dynamics, including periodic, quasiperiodic, and chaotic attractors. Here we show that when the full advection dynamics is considered, including the history force, both the nature and the number o...

متن کامل

Particle dynamics and deposition in true-scale pulmonary acinar models

Particle transport phenomena in the deep alveolated airways of the lungs (i.e. pulmonary acinus) govern deposition outcomes following inhalation of hazardous or pharmaceutical aerosols. Yet, there is still a dearth of experimental tools for resolving acinar particle dynamics and validating numerical simulations. Here, we present a true-scale experimental model of acinar structures consisting of...

متن کامل

Aerosol deposition characteristics in distal acinar airways under cyclic breathing conditions.

Although the major mechanisms of aerosol deposition in the lung are known, detailed quantitative data in anatomically realistic models are still lacking, especially in the acinar airways. In this study, an algorithm was developed to build multigenerational three-dimensional models of alveolated airways with arbitrary bifurcation angles and spherical alveolar shape. Using computational fluid dyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of applied physiology

دوره 118 11  شماره 

صفحات  -

تاریخ انتشار 2015